Home Search GeoAstro Applets Astronomy Chaos Game Java Miscel- laneous Physics Quiz Who is Who ?

Overview

(4) Kumar's Geometric Solution of Quadratic Equations

 The only tools required by Kumar's technique are a sheet of graph paper, and a setsquare (or a 45° right triangle). x2 + px + q = 0 - Plot the point (q,p). - Place the setsquare ABC:      with its edge AC passing through the point (1,0) on the horizontal axis,      with its apex A on the vertical axis,      with the perpendicular edge AB passing through the point (q,p). - The ordinate of the point A on the vertical axis gives the negative value of one of the roots. Quadratic equation: x2 + px + q = 0 Example: p=3, q=2, roots: x1=-1, x2=-2 The proof is given in the paper of Arun Kumar. Checking the box will mark certain values q, and p: -  q, and p are a multiple of the raster size, and -  the roots x1 and x2 (if any) are multiples of the raster    size. Select the raster size, or a continuous mode ("Raster off"). A table of p, q, x1, x2 is available by "Data Window". The curve p = 2·sqrt(q) represents the limit between the regions of (p,q) with reals roots existing and no real roots. It corresponds to the discriminant D = sqrt(p2/4 - q) = 0.

 Web Links v. Staudt: Construction des regulären Siebzehnecks, Journal für die reine und angewandte Mathematik, 24. Band, Heft 3, 1842, p. 251 (Göttinger Digitalisierungszentrum) Karl Georg Christian von Staudt (Wikipedia) Karl Georg Christian von Staudt (MacTutor) T. C. Hull: Solving Cubics With Creases: The Work of Beloch and Lill (PDF) M. E. Lill: Résolution Graphique des équations numériques de tous les degrées à une seule inconnue, et description d'un instrument inventé dans ce but, Nouvelles Annales de Mathematiques, Series 2, Vol. 6, 1867 ( PDF) Thomas Carlyle (MacTutor) Print (1) E. John Hornsby: Geometrical and Graphical Solutions of Quadratic Equations, The College Mathematics Journal, 1990, Volume 21, Number 5, p. 362-369. R. Kaendes, R. Schmidt (Hrsg.): Mit GeoGebra mehr Mathematik verstehen, Vieweg+Teubner, 2011, ISBN 978-3-8348-1757-0. A. Baeger: Eine geometrische Lösung der quadratischen Gleichung x2 + px + q = 0, in: CASIO Forum 1/2012, CASIO Europe. E. J. Barbeau: Polynomials, Springer New York Heidelberg Berlin 2003, ISBN 0-387-40627-1, 978-0387-406275. Arun Kumar: A new technique of solving quadratic equations, Journal of Recreational Mathematics, Vol 14(4), 1981-82, pp 266-270.

Updated: 2012, Apr 07